Stability and rheology of dilute TiO2-water nanofluids
نویسندگان
چکیده
The apparent wall slip (AWS) effect, accompanying the flow of colloidal dispersions in confined geometries, can be an important factor for the applications of nanofluids in heat transfer and microfluidics. In this study, a series of dilute TiO2 aqueous dispersions were prepared and tested for the possible presence of the AWS effect by means of a novel viscometric technique. The nanofluids, prepared from TiO2 rutile or anatase nanopowders by ultrasonic dispersing in water, were stabilized by adjusting the pH to the maximum zeta potential. The resulting stable nanofluid samples were dilute, below 0.7 vol.%. All the samples manifest Newtonian behavior with the fluidities almost unaffected by the presence of the dispersed phase. No case of important slip contribution was detected: the Navier slip coefficient of approximately 2 mm Pa-1 s-1 would affect the apparent fluidity data in a 100-μm gap by less than 1%.
منابع مشابه
Experimental Study on the Flow and Heat Transfer Characteristics of TiO2-Water Nanofluids in a Spirally Fluted Tube
The flow and heat transfer characteristics of TiO2-water nanofluids with different nanoparticle mass fractions in a spirally fluted tube and a smooth tube are experimentally investigated at different Reynolds numbers. The effects of pH values and doses of dispersant agent on the stability of TiO2-water nanofluids are discussed. The effects of nanoparticle mass fractions and Reynolds numbers on ...
متن کاملExperimental stability analysis of different water-based nanofluids
In the recent years, great interest has been devoted to the unique properties of nanofluids. The dispersion process and the nanoparticle suspension stability have been found to be critical points in the development of these new fluids. For this reason, an experimental study on the stability of water-based dispersions containing different nanoparticles, i.e. single wall carbon nanohorns (SWCNHs)...
متن کاملTemperature-dependent effect of percolation and Brownian motion on the thermal conductivity of TiO2-ethanol nanofluids.
Ethanol-based nanofluids have attracted much attention due to the enhancement in heat transfer and their potential applications in nanofluid-type fuels and thermal storage. Most research has been conducted on ethanol-based nanofluids containing various nanoparticles in low mass fraction; however, to-date such studies based on high weight fraction of nanoparticles are limited due to the poor sta...
متن کاملToward TiO2 Nanofluids—Part 2: Applications and Challenges
The research about nanofluids has been explosively increasing due to their fascinating properties in heat or mass transportation, fluidity, and dispersion stability for energy system applications (e.g., solar collectors, refrigeration, heat pipes, and energy storage). This second part of the review summarizes recent research on application of TiO2 nanofluids and identifies the challenges and op...
متن کامل